Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.06.23290989

ABSTRACT

Current antiviral treatment options for SARS-CoV-2 infections are not available globally, cannot be used with many medications, and are limited to virus-specific targets.1-3 Biophysical modeling of SARS-CoV-2 replication predicted that protein translation is an especially attractive target for antiviral therapy.4 Literature review identified metformin, widely known as a treatment for diabetes, as a potential suppressor of protein translation via targeting of the host mTor pathway.5 In vitro, metformin has antiviral activity against RNA viruses including SARS-CoV-2.6,7 In the COVID-OUT phase 3, randomized, placebo-controlled trial of outpatient treatment of COVID-19, metformin had a 42% reduction in ER visits/hospitalizations/death through 14 days; a 58% reduction in hospitalizations/death through 28 days, and a 42% reduction in Long COVID through 10 months.8,9 Here we show viral load analysis of specimens collected in the COVID-OUT trial that the mean SARS-CoV-2 viral load was reduced 3.6-fold with metformin relative to placebo (-0.56 log10 copies/mL; 95%CI, -1.05 to -0.06, p=0.027) while there was no virologic effect for ivermectin or fluvoxamine vs placebo. The metformin effect was consistent across subgroups and with emerging data.10,11 Our results demonstrate, consistent with model predictions, that a safe, widely available,12 well-tolerated, and inexpensive oral medication, metformin, can be repurposed to significantly reduce SARS-CoV-2 viral load.


Subject(s)
COVID-19 , Diabetes Mellitus , Severe Acute Respiratory Syndrome
3.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2206.06444v2

ABSTRACT

Healthcare datasets obtained from Electronic Health Records have proven to be extremely useful to assess associations between patients' predictors and outcomes of interest. However, these datasets often suffer from missing values in a high proportion of cases and the simple removal of these cases may introduce severe bias. For these reasons, several multiple imputation algorithms have been proposed to attempt to recover the missing information. Each algorithm presents strengths and weaknesses, and there is currently no consensus on which multiple imputation algorithms works best in a given scenario. Furthermore, the selection of each algorithm parameters and data-related modelling choices are also both crucial and challenging. In this paper, we propose a novel framework to numerically evaluate strategies for handling missing data in the context of statistical analysis, with a particular focus on multiple imputation techniques. We demonstrate the feasibility of our approach on a large cohort of type-2 diabetes patients provided by the National COVID Cohort Collaborative (N3C) Enclave, where we explored the influence of various patient characteristics on outcomes related to COVID-19. Our analysis included classic multiple imputation techniques as well as simple complete-case Inverse Probability Weighted models. The experiments presented here show that our approach could effectively highlight the most valid and performant missing-data handling strategy for our case study. Moreover, our methodology allowed us to gain an understanding of the behavior of the different models and of how it changed as we modified their parameters. Our method is general and can be applied to different research fields and on datasets containing heterogeneous types.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL